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QUASILINEAR THEORY OF PLASMA OSCILLATIONS1

A. A. Vendenov, Ye. P. Velikhov and R. Z. Sagdeyev </
36762
A method of investigating non-equilibrium processes in */465
systems with collective degrees of freedom is developed. This :

method allows states of non-equilibrium with strongly excited
(suprathermal) oscillations to be studied.

As applied to plasma, this method is as follows: when
the non-equilibrium processes are examined, allowance is made
for the influence of a self-consistent oscillatory field on
the particle distribution function. The distribution function
appears as a sum of slowly and rapidly varying terms. In the
equation for the "slow" distribution function {o’ the quadratic

mean effect of the oscillations is taken into consideration.

The quasilinear method is used for the study of the prob-
lem of the absorption of the energy of finite-amplitude waves ;
in a rarefied plasma. It is shown that, for suprathermal os-
cillations, damping is considerably less than that obtained
from the ordinary linear theory, the magnitudes of the damping
decrement being in inverse proportion to the energy density €
of the waves. The expression for the damping decrement vy, valid

when € << kT, is of the form /JZZ :

7 = 7o{1 + 4 (¢/kT) Np]* p

/

-

where A v 1, ND is the number of particles in a sphere with
a radius equal to the Debye radius, and Yo is the decrement
given by linear theory.

The above formula for damping is applicable only in casgs
where the wave packet is sufficiently "wide": Av¢ > (eq>o/m)2

(where Av¢ is the spread of wave velocities in the packet
and ¢o is"the amplitude of the potential). In the contrary

1Paper No. CN-~10/199. Speaker: Ye. P. Velikhov. Discussion (in English)
appears on p. 493. Translations of the annotations are included at the end of
this volume of the "Proceedings" of the conference.

* /Numbers in the margin indicate pagination of the original foreign text.
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limiting case of a monochromatic wave the "damping decrement"

depends on the amplitude as e=3/4,  such dependence occurs,
for instance, when oscillations are damped within a shock

wave front in a rarefied plasma with no magnetic field present.
The results obtained are discussed in connection with diag-
nostic problems and in connection with the problem of high-
frequency heating of a plasma.

Oscillation processes in unstable plasmas not too far
away from the boundary of stability are investigated. The
stationary noise spectrum in a plasma carrying an electric
current under conditions of ion electrostatic instability is
found for purposes of illustration. The amplitude of the
stationary oscillations is determined. In cases when the
plasma is situated in a strong magnetic field and the current
flows in the direction of that field, the shape of the oscil-

lation spectrum is given by the expression € x3(1—x2)3/2,
where g, is the spectral density, x = w,/ks, s2 = To/M.

The 1limits of applicability of the quasilinear theory
just developed, the nonlinear effects of wave interaction,

and the question of transition to "turbulent" conditions are
discussed.

1. Introduction

Among the most salient features of plasmas are the seven branches of their
oscillation spectrum which are usually excited far above the equilibrium ther-
mal level.

At the present time, it is only the theory of small plasma oscillatioms,
based on linearized equations, which has undergone any degree of elabora%ion.
This theory permits one to find the dispersion properties of a plasma for
various types of oscillations and the conditions under which the latter in-
crease spontaneously (i.e., the instabilities of the plasma). What it cannot
do, however, is give the amplitude attained by the oscillations and indicate
how they affect transfer processes in the plasma, a most important matter which

arises in dealing with the problem of magnetic thermal insulation of plasmas.




Nonlinear plasma motions, on the other hand, have only been studied for
several special cases and under certain simplifying assumptions. One such case
is that of steady plane waves, when the only remaining dependence is on a sin-
gle space coordinate. These particular solutions nonetheless show that even
with small but finite amplitudes effects proceed not as predicted by the line-
arized theory. This applies, for example, to Landau damping, which follows
from the linearized theory but actually is not involved in the nonlinear con-
sideration of steady waves in a collisionless plasma. As we know, the reason
for this is as follows: the particles responsible for the absorption of waves
in a plasma are particles (ions, electrons) which are in resonance with the
wave; even with small amplitudes the distribution becomes severly distorted
with time due to the reaction of the wave field -- something not taken in- /466
to account by the linear theory. It is clear, moreover, that the reaction
effect plays an equally important role in the buildup of oscillations in an un-

stable plasma.

2. General Formalism of the Quasilinear Theory

Thus, the description of phenomena with small but finite amplitudes re-
quires consideration of the effect of oscillation reaction on the distribution
of particles in the velocity space.

Such consideration can be effected within the framework of the '"quasi-
linear" theory which is the subject of this paper. In the quasilinear approxi-
mation the particle velocity distribution function is represented as the sum of
two terms: the slowly varying term fo (v, t) (which we call the "background'")

and the rapidly varying term flA(X) t).l The slow variation of the "background"

LIn the linear theory fo is considered to be a given function.
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as a result of the effect of oscillation reaction on the particles is broﬁght
about by the mean square effects of small rapid oscillations. In this sense
we have here an analogy with the familiar Van der Pol method of nonlinear
mechanics.

It is important to note that the quasilinear approximation does not take
into account interaction between the various "harmonics" and "modes". TFor this
reason, the energy balance in the_E—th harmonic of the oscillations QE is the
wave vector) is determined, as in linear theory, by the equation dep /dt = 2v.
‘{fo}ek, where y is the imaginary component of the frequency and is a functional
of the "background" fo'

As a very simple illustration let us derive the quasilinear-theoretical
equation for the longitudinal Langmuir electron oscillations of a rarefied,
completely ionized high~temperature plasma. As we know, the processes in such
a plasma can be described by means of a kinetic equation with the self-consis-

tent field E, the effects of collisions between paarticles being neglected,

af 3f | eE of (1a)
-5?+ vt e =0
%?:41:Ne(f/dv—l). (1b)

A

Separating the didtribution function into its slowly and rapidly varying

terms,

f="1o+ Tt

(hence, the average value of the rapidly oscillating term is equal to zero,
<?£> = 0, so that <¥> = fo), and setting

f=;h‘+fv




—" (fuetkxi %l fc. c.)
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E= W;Z(Ene‘* lof 1 6.0.) 2

we equate the oscillating terms in the right and left sides of (1) to obtain a

relationship between fl and E,

e 1 éfo 1
= m l(mh-—ki;)—gibh (3)

and the usual expressions for the real and imaginary parts of wy which follow

from the linear theory,

Reow = Q{fe} ° (4a)

Imax =y} (4b)

The equation for the slowly varying term fo of the distribution function

is obtained by substituting expression (2) for E and fl into (la) and averaging,
a(/) 3(/) + <eb a(l..+l: > (5)

The following important point must be made in connection with the discus-
sion to follow: we will assume that the plasma simultaneously contains many
waves with different wave vectors and chaotically distributed phases; thus, we

will be considering wave packets of such width that it will be possible to

neglect the capture of particles by the "potential wells'" of individual packet

harmonics. In the case of longitudinal Langmuir oscillations we are presently
considering, this requires that the spread of the phase velocities w/k of the
waves in the packet exceed substantially the velocity e¢, with which a wave-
captured particle would move in the "potential well",

5
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If condition (6) is fulfilled with the result that there are no captured

particles, we can assume the mean distribution function <f> fo to be homo-

@

geneous in space, so that 3<f>/8x = 0. Recalling that <Efo>

obtain from (5) the following equation for the "background" )co:

%__Dal.,

¢ 7)

where the "coefficient of diffusion in the velocity space" D is proportional to

the square of the electric field of the waves,

i

D—‘e"‘> Bue¥s=iowt 4 o0

X (T(E:ZE—TT elkx—iey +e c)>

T ew

- ' ——-2nZ]Ek{’a(wk~kv) - '(s) o

On the other hand, the rate of change of the wave energy in the spectral

interval (k, k + dk) is given by formula (4b), which in the case of long-wave

(kR «1) Langmuir electron oscillations is of the form® /467
1Al L oF (9)
) 2re{fe} = (aw vumfk
: where F(v" ) = f)co dv_L is the distribution of the electrons over velocities

parallel to the direction of wave propagation. The system of equations (7),
(8), (9) of the quasilinear theory is a closed one; it describes the reverse
effect of the Langmuir oscillations on the particle distribution function. It

should be noted from the start that an equation of the type (7) may be meaning-

lyhen kRp <1, w=z Q = [oue_2 + 3(T/m)k2]l/2, we2 = 4mNeZ/m.
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fully considered only if the amplitude of the oscillations is considerably lar-
ger than the amplitude of thermal plasma noises in the corresponding portion of
the spectrum. This is due to the fact that, as was shown in [1], consideration
of thermal noises merely results in a change of the quantity subsumed by the
logarithmic symbol in the Coulombic collision term (which is tantamount to ex-
ceeding the limits of accuracy).

Where necessary, collisions are taken into account only to within loga-
rithmic accuracy. For this reason, the effect of thermal noises whose energy
density is on the order of magnitude of NT/Np, where Np is the number of par-
ticles in a sphere of Debye radius Rp, is neglected. In other words, we limit
ourselves to the study of the '"suprathermal" oscillations, whose energy density
e > NT/Np.

It is necessary also to note the fact that the applicability of the quasi-
linear theory equations is limited to cases where the oséillatory increment (or
decrement) is considerably less than the frequency of the oscillations; if, on
the other hand, this condition is not fulfilled, separation of the distribution
function into rapidly and slowly varying terms is impossible and equations of
the type (7), (8), (9) are invalid.

It is clear from the form of equation (7) for the mean particle distribu-
tion function fo that the excitation of collective degrees of freedom (waves)
in a plasma involves the appearance of additional diffusion in the velocity
space in addition to the usual "collisional" diffusion. It is interesting that
the ratio of the coefficient of "wave diffusion" D to the "collisional diffu-
sion" coefficient D0 ~ Nel4/mv (where v is the average thermal velocity of the
electrons),

D _eEmN EYN B o

D~ “WeSjmv " HEp ~ NT

- R RS

(10)
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(where Np v NRD3 is the number of particles in a sphere of Debye radius Rp) is
equal in order of magnitude to the ratio of the wave energy (per particle EZ/N
to the energy of electrostatic interaction (likewise per particle) e2/RD.l)

Thus, the effects of particle interaction with excited collective degrees of

freedom are inversely proportional to system non-idealness.

7
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Fig. 1. Emission (A) ‘and absorption
(B) of a wave by a particle.

In order to investigate the physical meaning of the quasilinear theory
and to generalize the resulting equations (7)-(9) to include the case of an ar-
bitrary system with strongly excited collective degrees of freedom, we will
consider such a system as comprised of two gases -- a particle gas and a wave
gas -- and write the equations for the conservation of the particles and waves
in the phase space.

Let us consider first the balance equation for the number of particles in
the velocity space (assuming that the system is homogeneous in the coordinate
space). Since the collective modes are strongly excited (so that the density
of the wave gas is considerably higher than its thermodynamic equilibrium

value), we can only take into account the particle-wave interaction processes

1This is the familiar "Debye correction" introduced into the thermodynamic
potentials of Coulombic systems.



(and in the first approximation at that). The basic process whose effect we

must consider is the "first-order" process!

, i.e., the emission or absorption
of a wave q by a particle k (Fig. 1).

The matrix elements of processes 1A, 1B are proportionél toxfﬁg and«/ﬁgif,
respectively, where Ng is the number of waves per unit volume of the phase
space;2 in our case, however, Nq >>1, so that the probabilities of the two pro-

cesses are equal and proportional to Nq:

W(k,q) =N, Wi k4 q0 (gi— ¢r)

Wiy q = Wit q,u)- -

As a result of the emission or absorption of waves, a particle experiences
a change in momentum and changes its position in the phase space; the change in
the number of particles at the point k of the phase space consists of "depar-

ture terms'" due to absorption

—-JFdQIk Ny Wik q0 (66 + hw.,-——ekﬂ) (12a)
and emission /468
| '-‘-jdq/.N. Wike g8 (66— h g — eng) (12b)

IThe very fact of describing excited system states by means of two gases,
the particle gas aﬁgwthe wave gas, implies that the interaction between the two
is slight. We can therefore assume that higher-order processes play a lesser
role than first order particle-wave interaction processes. Specifically, for
such systems with Coulombic interaction as that of a rarefied plasma or an ul-
tra-dense electron plasma, the interaction between particles and waves is elec-
tro-dynamic and proportional to the particle charge; the weakness of particle-
wave interaction in this case has to do with the smallness of the parameter
(e2/ (e))/r (where <€> is the average particle energy and r is the average dis-
tance between the particles), which is proportional to the square of the charge.

2We assume that the waves are Bose-Einstein statistical.



and of analogous "arrival terms''due to absorption
g P

+qu,*—4Nq Weoqk0(ex-q + h w; — &) (12¢)
and emission

+qulk+.,Nr1 lvk+q,k6(€k+q—h(ﬂq—ﬁﬁ)) : (124d)

where fk is the distribution function (the diagonal part of the density matrix
at k -- the particle representatidn) » €k is the kinetic energy of a particle
with the wave vector k, €q is the energy of the wave q.

Summing the contributions of the various processes (12), we obtain the

following equation for the distribution function fk:

-]
_é%'éf‘l'INq(Y'qu.q—Y’k.q) (13a)

Yig=(fi—fe-g) Wi,k—q0 (et — Ekq—h @0y). (13b)

In a similar way we obtain the equation for the wave distribution function

Nq. Nq varies as a result of the birth and destruction of waves by pa.rticlesl

s

so that in the spatially homogeneous case (3/3x = 0)

-a-a‘-“f'- = [N Wik afud (o + B oy —eusg) db
+ [Ny Wisqifisqd(orry—h wg— ) dk

: =N,f¥l,,+.,,.,dk. ' (14)

Equations (13)-(14) describe non-equilibrium processes in systems with

strongly excited collective degrees of freedom (when there are no external for-

lonce again, we take into account first-order processes only and assume
that Nq >> 1.
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ces F and no spatial gradientsl).
If the relative change in the momentum of a particle associated with the

birth or destruction of a wave is small,

9q
x < 1 (15)

then particle balance equation (13) assumes the Fokker-Planck form. Indeed,

expanding the function ¥ and the difference Wk+q,q - wk q over q in (13), we

obtain
I hk
Y’k.._éq—a—/,:—Wk,lg-qé(—,;qf—hwq) (16)
and
,7;-=quN.,-q-a—,;{Wk,h_,,d(’—"~q-—-hw,q—‘f’z‘—}, (17)

i.e., the Fokker-Planck equation. In this same approximation the equation for

Nq can be written as

anN Nk o

---ét"- = N,,J‘dk Wiyk—qO (:"-—- h'm.,) q-a/,: . (18)
Specifically, for a system of particles with Coulombic interaction (a

plasma) the relative change in the momentum of an electron associated with the

birth (absorption) of a quantum of Langmuir oscillations does not exceed hmp/<§)

and is small for rarefied and ultra-dense plasmas, so that equations (17)-(18)

apply here; for a rarefied plasma

Wik-q=4mnte? -h—“-:l |
7

1In order to extend the argument to cover the case where F # 0; 3/3x # O
it is sufficient to replace the partial derivatives Bf/st by the total deriva-
tives df/dt = 3f/ot + [#F] in the left sides of equations (13a) and (14).

11




and (17) coincides with previously derived equation (7), while (18) becomes the
usual formula of the linear theory for the increment (decrement) of waves in a
plasma (9).

In the case of an arbitrary system with excited collective modes, the par-
ticle balance equation is not of the Fokker-Planck form; in the present study
we shall be concerned only with the problems of quasilinear plasma theory, and
will thus make use of equations of the type (17)-(18) [or (7), (8), (9)].

The technique used to deduce the system of equations of the quasilinear
theory (7), (8), (9) can be used to obtain analogous equations for a plasma in
a magnet%c field (e.g., see [2]). We will not consider the general case here,
however, limiting ourselves to a discussion of some actual effects: the devel-
opment of oscillations in an unstable plasma, the absorption of finite-ampli-

tude waves in a plasma, etc.

3. Development of Instability

In this section we consider the problem of the development of instability
in a rarefied plasma within the framework of the quasilinear theory. We shall
limit our discussion to instabilities on the Langmuir branch of plasma oscil-
lations, assuming for simplicity that the problem is one-dimensional (the dis-
tribution function depends solely on the projection of the particle velocity on
a single chosen direction, the Langmuir oscillations occurring in this same
direction).l

Let us assume that at the initial instant the particle distribution f(O,

v) in the velocity space is of the form shown in Fig. 2A; Langmuir oscillations

1such a situation arises, for example, in the presence of a strong magne-
tic field which sets this direction apart from the rest.

12



then start to build up in the region where the derivative 3f(0, v)/3v is posi-

tive; the spectral density of these oscillations increases [see (9)] as

. o\E ' w? 9f
2B g 2 (19)
X 469
flov
- A
o) v
b B
v
IE&’
C
¢ ve w/K

Fig. 2. Formation of a "plateau" in the
particle distribution function (A, B) and
the spectrum of oscillations as t» = (C).

The appearance of suprathermal noises in the plasma leads in turn to the

diffusion of particles in the velocity space,

b 3, (20)

3
3t av ov

The coefficient of diffusion D(t, v) is related in this case to the square of

the oscillatory field by the expression

13
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. s
D= 21!%,—f|i]u[’6(w-—-kv)%%= e ]E*P_'l’., ' (21)

m?

since in this case involving long waves, the frequency w coincides with the
plasma frequency (4 7 Nezm)llz, and the velocity of the resonance particles is
therefore inversely proportional to the wave vector, v = w/k.

As a result of diffﬁsion, the initial particle distribution smooths out
and a ''plateau" (Fig. 2B) [3] appears in the velocity interval vy <V <.

At the same time, a steady—statel

spectrum of suprathermal noises arises in the
interval of wave numbers w/vy < k < w/vl. The shape of this steady-state spec-
trum and the spectral density may be determined as follows.

Integrating (19) over time and neglecting the thermal noise energy in com-

parison with the energy of the oscillations which are building up, we find the

spectral density lEklz(t) of the suprathermal noises,

¢
e ) = S [ 2L (22)
; .

On the other hand, integrating (20) over time and over the velocity v in the
interval from vy to v, applying (21), and noting that Daf/Bv = 0 when v = vy,

we obtain

L4}

v . f
! » ’ . 2 1 'y ]
ey —f0,0nay = o fi B §L g, 23)
0
Comparing (22) with (23), we find the spectral demnsity of the noises,

[Bif? (1) = 36",‘-'-' wv? f [f (¢, v)—/(0,v")]dv. (24)

L

1The derivative of the distribution function with respect to velocity
vanishes in the region of the plateau, so that the oscillations neither build
up nor are damped out.

14




Upon termination of the process of smoothing of the distribution function; when
a plateau f(w, v) = const is established in the range V] <V < Vg, the steady-
state spectrum of suprathermal Langmuir oscillations we have been seeking is

fully determined by the initial and final distribution functions,
| Bal? (00) = :::'f- wv f[/ (oo, ') —f (0,.v')] dv', (25)

(the shape of this spéctrum is shown in Fig. 2A). By (25), the spectral den-
sity of the noises vanishes at the points ky = w/vq and k, = w/v21 and its de-
tailed dependence on k is determined by the actual shape of the particle velo-
city distribution function.

The plasma with a 'plateau" in its electron distribution which arises as
a result of instability and diffusion has the property that externally excited
longitudinal Langmuir oscillations propagate in it without being damped, pro-
vided their phase velocity vy lies within the interval of the plateau vy < ve <
vo.

The energy density of the suprathermal noises established by the time that

the diffusion process terminates is equal in order of magnitude to
E’=f’-’-]Egi’dk(2n)*‘ ~8n(mvd —muy3), (26)

where dn is the density of that portion of the electrons which diffuse in the
velocity space as a result of the emission and absorption of collective Langmuir

oscillations and whose kinetic energy is gradually altered thereby. /470

1The integral in the right side of (25) vanishes for v = v, by virtue of
the law of conservation of the number of particles:

[romas = [remvran,

R L TR
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We see, therefore, that the quasilinear theory just presented informs us
about the state into which the initially unstable plasma passes as a result of
the development of kinetic instability, as well as about the particle distribu-
tion function and spectrum of collective oscillations in the final state. It
turns out that in a rarefied plasma the relaxation process in the velocity
space breaks down into two stages: at first the particle distribution function
f(v) smooths out rapidly near the region where there was a positive derivative
3f/6v; only later, and much more slowly, does the distribution function tend
toward a thermodynamic equilibrium function. It is precisely the first
stage, i.e., the establishment of a "plateau" in the distribution function and
the appearance of suprathermal noises, which the quasilinear theory describes.
If the "plateau' happens to be narrow, system (19)-(21) describing this process

can be reduced to a single equation for the coefficient of diffusion D,

oD o*D
S =D +2:D (27)

where the function ® depends solely on the velocity v and coincides to within a

factor with the derivative Bf/Bv at the initial instant,

@D (v) = nwv?*df (0, v)/ov. (28)

We note that the steady-state solution of equation (27), which can be obtained
by setting 3/3t = 0, leads us (by way of (28)) to the formula for the spectral
density of the suprathermal noise (25).

Using (27) it is possible to investigate the entire process of development
of oscillations in an initially unstable plasma and of the appearance of a
plateau in the particle distribution function f(v). The duration T of the en-

tire process is of the order of magnitude

16
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T EEDR) T W igml TR et -

4. Absorption of Waves in a Plasma

As we know, the linear theory of small oscillations of a rarefied plasma

predicts '

‘collisionless damping' of waves propagating in the plasma. A typi-
cal example of such '"collisionless damping" is the reduction of the amplitude
of longitudinal Langmuir electron waves excited on the boundary of the plasma
by an external electric field of frequency w > w, which propagate into the in-
terior of the plasma in a direction perpendicular to its boundary. In the case
of long-wave oscillations (kRD <<1), which are the only ones we shall consider,
the reduction of the amplitude of a wave as it penetrates into the plasma is

given byl

;"’ii"__(ﬂ
B T \ov/v—an (30)

where w, is the plasma frequency, k is the wave vector, and f(v) is the elec-

tron distribution function with respect to the velocity component parallel to

1This expression is valid at distances from the boundary which are in ex-
cess of several wavelengths. The effects in the boundary region, where (30)

does not apply, do not concern us here. We note that (30) follows from the
equation

2N, : hkq | o
atﬂ + [o# Nq] - N'J dek‘k.qd(—-"'—q- - hm.)q-—aiq-

if we recall that in the case in question, when 3/3t = O,

how
¢’

Mq aN' a‘#q.aNq 3k T aNq

aq oz o=z aq~wmaz

W=4n?

[N =2

17



the direction of wave propagation. The '"prime" denotes differentiation with
respect to the x-coordinate.

Thus, the energy of a packet of waves of infinitely small amplitude and
different but close frequencies (and wave vectors) diminishes exponentially
with distance from the boundary; the spatial decrement of this damping is given
by formula (30) with f = (2 m T/m)~1/2 exp(-mv2/2T) (Fig. 3A).

If, on the other hand, we consider the propagation of waves of small but
finite amplitude, their damping will be seen to differ radically. Indeed, the

quasilinear~theoretical equation for the mean electron distribution function f

(31a)

@l@
Q|-

af @
Yoz = ov D

D= zn’z B3 6 (0 — kv) = = 122 (31p)*
k

s
- m m v
L4

implies that the diffusion of particles in the velocity space accompanied by
emission and absorption of Langmuir oscillations sharply reduces the derivative
Bf/BV, i.e., by formula (30), the damping of waves as they pass through the
plasma. 1In the velocity range of the resonance particles the solution of sys-
tem (30)-(31) is

} (%,2) = const.

ai, {EW?=0, (32)

i.e., the waves are not damped at all.

IThe wave vector k and the velocity v of a resonance particle are unam-
biguously related in this case, v = w/k. Expression (31b) presumes that a gen-
erator which produces a wave at the boundary does not at the same time produce
free-flying resonance particles, i.e., it presupposes a certain boundary-value
condition. 1In the contrary case, in the presence of free-flying resonance par-
ticles, the results are not qualitatively altered.

18



In actual fact, the damping of the waves is of small, but nevertheleés
finite magnitude; this is due to the fact that collisions between particles
tend to restore dynamic equilibrium (render the electron distribution function
more Maxwellian), i.e., to make the derivative Bf/av negative (Fig. 1C). 1In

order to find the magnitude of the associated weak wave damping, it is necessary

/471
‘!M
A
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l .
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| |
| 1

v

Fig. 3. Distortion of the particle
distribution function f(v) under the
influence of a Langmuir wave packet.

to introduce a collision term into equation (2) for the mean distribution func-
tion f. In the case of long waves we have been considering, the collision term

is of the form

19



St = g5 m(ef + o). (33)

where the "collision frequency" vg is equal to
vg = 8/v3, (34)
where the order of magnitude of S is equal to me4/N.
With due allowance for collisions between particles, the equation of the

plasma electron distribution function becomes

of o . af

where St f is given by expression (33), and D by formula (31b).
If the amplitude of the waves in the packet js not overly small, so that

the inequality

. B 1.
ey ; Kb~ (36)

is fulfilled (where E2/4n is the wave energy density), then, as may be shown by
estimation, the left side of (35) can be neglected. The derivative of the dis-

tribution function, by (35), then becomes

/]
=—nit 0k

If the packet is not too wide, A(w/k) <<4T/m, then, as we see from Fig.
3, the distribution function (but not its derivative) changes but slightly un-
der the influence of the waves, so that in the right side of (37) we can replace

{ by the Maxwellian distribution function fM = (m/2 T)l/2 exp(-mv2/2T), and,

lgince in the velocity interval in which we are interested (T/m)e(3f/dv)
is negligibly small in comparison with vf.
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substituting in the resulting value of the derivative 8f/3v = - vsvfM/D into

(35), we find that

rE'kI" T wet m v
ks SRS 38)

B

or, taking into account (31b), we arrive at the equation giving the spatial

form of lEklz,

2|EBy? T o o mt M
B M o (39)

(39) implies that the energy of the wave packet diminishes linearly with

distance from the boundary according to the law (Fig. 4)

Sl GRS .2
o =1 I (40)

where the characteristic length L (along which the waves excited at the boun~

dary are damped) is directly proportional to the energy of the waves at the

IEgR

F = - -

Fig. 4. Damping of Langmuir waves in a plasma.

boundary; its order of magnitude is

v NT 1
L b e 5 Np (41)

i.e., it exceeds considerably the damping length in the linear theory provided
that the wave energy exceeds the energy of the thermal noises, EZ/NT 3 1/Np (we
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recall that in the case under discussion E2/NT > 1 (ND)l/Z).
To conclude this section we note that the reduced absorption of waves of
finite amplitude in a rarefied plasma (see also [2]) should be taken into

account in computing plasma heating in a high-frequency field.

5. Plasma in a Constant Electric Field /472

In the present section we shall be concerned with the quasilinear theory
of a plasma situated within a constant electric field E. Upon actuation of the
field E, a current j = oE flows through the plasma; the plasma resistivity o1
consists of two terms: the first is determined by collisions between particles
and the second by the interaction of charge carriers with fluctuating electric
fields.

As the electric field E increases, the mean directed electron velocity Vg

increases. At some critical velocity v, the state of the plasma becomes un- S

stable as low-frequency oscillations (ionic sound) begin to build up in it [3].
The amplitude and spectrum of these oscillations are determined by the balance
prevailing between the flux of energy to the oscillations from the electrons
moving in the constant electric field E and the flux of energy dissipated in
the oscillations. The energy dissipation may be determined by two processes:
the transfer of energy over the oscillatory spectrum from certain modes to cer-
tain other modes (transfer between collective degrees of freedom) and direct
transformation of the oscillatory energy into heat during particle collisions.
The characteristic time of energy transfer over the spectrum tends to infinity
as the oscillatory amplitude tends to zero, while the characteristic energy
dissipation time for individual particle collisions remains constant as this

same limit is approached. For this reason, with small super-criticality (i.e.,
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with v, slightly exceeded) the shape of the oscillatory spectrum and the ievel
of the oscillations are determined by the balance between the energy contribu-
ted by the moving electrons and the energy dissipated during particle pair
collisions; they can be found with the aid of the quasilinear-theoretical form-
alism developed in Section 1.

For simplicity, let us consider a partially ionized plasma in which the
dominant role is played by collisions between charged and neutral particles.
We limit ourselves to the case where the collision frequency vg is considerably
less than the oscillatory frequency w, so that neutral particles do not take
part in the oscillations. We will consider a plasma situated in a strong mag-
netic field, so that for the ionic—acoustic branch the oécillatory wavelength
is considerably larger than thg Larmor radius of the joms.

Dispersion equation (42) for ionic oscillations in a strong magnetic field
can be obtained by expanding the kinetic equation for the rapidly oscillating

term of the distribution function in the ratio of the characteristic oscilla-

tory frequency to the ionic cyclotron frequency,

R () (o) — i) doy
' PE ‘7"’,".r (vy — @/ky)® + vedjiey® e

Fy (v) (w — wlku)'dfii-‘-

crey RO e el T - (42)
The energy flux balance condition (43) is of the form
wed [ Fe o ve/kydoy
0 = o r (Vi ~w/ky)*+ve? ks
Fi (w) vifky doy
Fwp? | e T i
o — +
oy — eofky)* -+ i ey (43)

whpe 35 P = dn Nedm; ap® 55 )8 == 4 Ned/ M,

In equations (42)-(43)




represents the steady-state portion of the electron (ion) distribution fuﬁction
with respect to the velocity vy parallel to the direction of the constant mag-
netic field,l and k“ is the projection of the wave vector on this direction.

As we know, ionic-acoustic oscillations exist in a plasma only if the
electron temperature T, exceeds considerably the ion temperature T;; in this

case equations (42) and (43) become
k= wtl—— 5 (42")
‘ 2
Féfod= < 3% wrawio - (43"

Here

o= (M [ I () }-1~>T.
v — wlky M

denotes the velocity of the ionic sound in the low-frequency range (w~ ck”aas
w- 0), Using (42') to find the frequency w(k, Wl) and substituting it into (43')

we obtain the steady-state condition for a wave directed at an angle 8 = arc

cos k"/k to the magnetic field,

é m 1
(o)== Ty — . 4h
Fe'o) ® M o nxcost?\/l - m;’/c’ (44)

The right side of (44) increases monotonically with increasing 6 ; hence, if the

steady state condition

Y N N
PSS W Vi (43)

if fulfilled for all purely longitudinal waves (§ = 0), then all of the "oblique"

1The magnetic field of the current flowing in the plasma is considered to
be negligibly small in all cases.
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waves (® > 0) are damped out, i.e., in the case of these waves, according.to
(44), the energy dissipation due to collisions between ions and neutral parti-
cles exceeds the influx of energy from the resonance electrons. Thus, in the
steady-state the plasma contains only waves directed along the magnetic field.

The form of the distribution function for the electrons in resonance with
the steady-state ionic-acoustic noise background can be determined from equa-
tion (45); the resulting expression for the distribution function is valid
within a limited velocity interval, i.e., where the electron drift induced by
the constant electric field maintains the steady-state level of the oscilla-
tions.

According to the linear theory, instability arises in that portion of the

velocity space where Fe'(Wl) exceeds the right side of (45).

/473
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Fig. 5. Function Fe(v") of electron
distribution in an electric field.
Fig. 5 shows the "initial" region of instability 1-2. However, as we saw
in Section 1, in a time on the order of several oscillatory periods such an in-
stability extends over the entire spectrum of ionic-acoustic oscillations whose

phase velocity w/k“ lies between the mean thermal velocity of the ions
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3

1 1 . .
(T/M)/2 ) and the velocity c ar(Te/M) In this region the function of electron

distribution with respect to longitudinal velocities is distorted and assumes
the form shown in Fig. 5.

The oscillatory spectrum in this region can be obtained on the basis of
the following considerations.

In accordance with the general formalism of the quasilinear theory (Sec—
tion 1), consideration of the reaction effect of the oscillations on the elec-

trons leads to an equation for the steady-state distribution function Fe(v“),

_G_E,al"'e +?£__8_ /N o F,
m oy m o w(l—ulc!) Jy

=0, (46)

where ¢} = Ek2/4n, k = w/v") is the spectral density of the electrostatic
energy. Tﬁe first term in (46) describes the variation of the electron distri-
bution under the action of the constant electric field E, while the second term
is due to the reaction effect of the induced waves on the resonance particles.

Integrating (46), we obtain an expression for the spectral density,

‘W Rp ve [ M3 : T
A (M) = 2 —aran | Ze

i - X {J.% Fedy + c’}, | (47)

where the "electron Debye radius" Ry =1/T;7Ei/we, x = vy/c.

The integration constant in (47) may be found by imposing the requirement
of a minimum total energy in the oscillatory spectrum. This minimality re-
quirement consists in the following. In that region of the velocity space

where condition (44) is fulfilled, ionic~acoustic waves (e.g., from some exter-

1Strong resonance absorption of oscillations by ions which exceeds the
electron-induced buildup by a factor of over 4/M/m begins to occur in the neigh-
borhood of the ionic thermal velocity.
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nal source) can propagate without damping. If the spectrum of these waves is
such that

£k

e e e __{'_'9. == ¢on t
o (1= wiyed) gy - O™

they make no contribution to electron diffusion, i.e., they do not interact
with the plasma at all. For this reason, the spectrum may be determined only
to within such a packet of non-interacting "extraneous" waves. The energy
minimality requirement excludes this packet. In order to fulfill this require-

ment, a constant positive term

-‘—ch (U")dv"==-‘—-‘¢\/l—-“i

must be added to the function

_mﬁ%i,ﬁgvﬁﬁ

where o = (2/n)(va/c)(m/M)(vi/mi); this latter function increases monotonically
in the region under considerationm.

Hence, the spectrum of ionic-acoustic oscillations may be written as

lBp o [m \¥2 v
NTe - (ﬁi) We
Viezgd  VT=2|_
' x{ z, z }‘“‘L‘fw”

(48)

As we have already noted, ionic sound is present only when T;/To << 1,

i.e., when xo << 1. Thus the spectral density is given by the formula

E 32 T,
:%V/—f"?‘ o~ (.M_) le (w, t.)z ‘.1,-3(1 — )3 |

("CiE l/vi) B (49)

throughout almost the entire frequency region. The total electrostatic energy

density of the ionic-acoustic oscillations is equal to
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E3 1 T, —
BNT, ~ W T, {onti) . (50)

Formula (49) can be used to find the energy distribution in the low-fre-

quency portion of the spectrum (usually measured experimentally):

o i = A (3 2 iz (2], =

The effect of these oscillations on transfer processes in a homogeneous

plasma is small, since:

1. The spectrum is one-dimensional (Ek]|H), so that the electric fields
of the oscillations cannot result in the appearance of "anomalous
diffusion" of particles across the magnetic field.

2. The oscillations "occupy" but a small region of the velocity space /474
(c/(Te/m)l/Z%ﬂEﬁﬁ ). From the standpoint of electric current flow the
electrons can be broken down into two groups: the resonance/electrons
retarded by the ionic oscillations, and the non-resonance electrons
retarded in colliding with neutral particles. Since the second group
contains 4/M/m as many electrons, the effect of the additional "collec—
tive" resistance in this case is small.

6. Effect of Cyclotron Waves on the Lifetime of
Particles in a Trap With Magnetic Mirrors

The appearance of instability and noises in traps with magnetic mirrorsl

may be due to the anisotropy of the particle distribution function in the velo-
city space. This anisotropy can be the result of the corresponding injection

or heating of the plasma, but it can also be inherent in the method of confine-

1From now on, we assume in all cases that the magnetohydrodynamic instabi-
lity of such systems has been eliminated by appropriate stabilizing measures.
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ment: as the particles approach their turning points, their longitudinal'ener—
gy is completely transformed into trasverse energy.

As we know, such anisotropy results in the buildup in the plasma of a
circularly polarized electromagnetic wave [3]. The phase velocity of the wave
is high (on the order of the Alfvén velocity). Hence, in order for the velocity
distribution of the particles to contain resonance particles for which the wave
frequency is equal to the Larmor frequency by virtue of the Doppler effect, it

is necessary that

o + oy ~
= Ky l‘ ,

since w/kyas H V4mNM > vT/M, this is possible only when the minus sign is chosen.

This sign corresponds to a wave circularly polarized in the direction of parti-
cle rotation.

Let us consider the mean effect of such a wave on particle motion in a
spatially homogeneous plasma. For simplicity, we limit ourselves to the case

of purely longitudinal propagation. Under the action of the rotating electric
K. - E«—iEy (52)

and magnetic
ﬂt=—‘—:bt-; Hy—iH, (53)

fields of the wave with the wave number k, the change in the particle distribu-

tion function fk in a spatially homogeneous plasma is equal to

'/k=’g—i 1 (o — ""’")(8/-/901)+ku¢a[,[ﬁ , (54)

o— k)~ oHa

where fo is the function of particle distribution by velocities averaged over
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many oscillations, vy, v;, and ¢ are the cylindrical coordinates in the velo-
city space, ey and my are the charge and mass of the particles.

The equation for the function fo is obtained by averaging the Boltzmann

equation over small oscillations to yield

e (Sl 2o o]

X [—aal—;— e~ impitik'e o c.c.]> . (55)

This leads to the equation

o fikm) L e L, 8k,

we ] vy ovy Wi
Ltu) % kv,
x{1— o T e aq}"' (55)
where
_ 1 B el
D"—"ITdm/dk—u,| ma®

and the following relationship exists between vy and wg:

We—WHa

vy = P
Thus, the action of the waves alters both the longitudinal and transverse velo-
cities of the particles, i.e., the magnetic moment pg = maYLZ/ZH. Equation

(55) has the form of the Fokker-Planck equation in the velocity space. As a

result of '"diffusion" the distribution function is smoothed along the lines

: vy 3k —
vu——fz—a;PT const.

Since we are considering small-amplitude waves for which energy transfer from
one Fourier harmonic to another is negligibly small as compared with the flux
of energy from the particles, the change in the wave energy or in the "coeffi-

cient of diffusion" Dy proportional to it is determined as in the ordinary
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linear theory:

“5:‘5‘“"‘27{/0}' (56)

where y = Imwk can in turn be found from the dispersion equation for small os-

cillations:

k2
P I

- %_z _l:%’_f (w—kv) (3fsl0v,) + kv, (a/olatn)

©— oy — kty

. dv. . (57)

Here

wa? = 47 Neg®/my, wpa = e Hlmgec.

The instability jﬁst described develops much more rapidly on the electron
branch of oscillations. The electrons are confined by the space charge of the
ions, however. Hence, plasma escape is in the final analysis determined by the
escape of ions. If the wavelength is considerably smaller than the system di-
mensions kL >> 1, then the change in wave energy can be computed using an
approximation borrowed from the field of geometric optics. In this case the
change in the spectral density ey of the oscillations at a given point is de-

termined by the equation

(ru O Om  deme O L1202
T ok B wa ok = 27 {fob e + Ji(2), (58)

where Jk(z) is the power of thermal noise sources for the given harmonic k as
determined from Kirchhoff's law. The third term in the left side of (58) can
generally be neglected. We thus have the following equation for the change in

the coefficient of diffusion in space:

oD doe 0Dy
TI_F—":+%;' a‘.=27DH+DH°- (59)
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(Dy 1is expressed in terms of the equilibrium fluctuations of the electrié
fiéid).

In the same approximation kL >> 1 the diffusion of the particles under the
action of waves is described by equation (55). If the field varies weakly for
dimensions on the order of those of the ionic orbit, then the drift approxima-

tion yields the following expression for the mean distribution function fo:

me 09z Oy

jl o 2 k2 o kH
_{H dnu +3'Ju wHa} H DH{aﬂa + ©Ha 8_1;"—}"' (60)

In principle, equations (57), (59), and (60) permit complete solution of the
problem of the "anomalous" escape of particles from a trap. We, however, will
limit ourselves to computing the coefficient of diffusion Dy and the particle
escape time.

In the absence of particle escape, the function of particle distribution
by velocities in a field varying up to the magnitude Hy in the "mirrér" is

given by the expression

fo=/m(”u,".L)€(vJ_ H—"};—H—vu’)
r x>0
e(x) = )
0 <0 (61)

where fm(v", YL) is the Maxwellian distribution function. Further, let us sup-
pose that this function is isotropic. With such a distribution (with an un-
filled cone of escaped particles), equation (57) implies that

7= —"‘\/;——:;c—_;—- v"‘e” MwntzT

_ VeTIM

. Hm+ H k u? (62)
(1+ Hm — H om @TM) .

and
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T (63)
In these expressions vy = (w - wHi)/k, i.e., the velocity of the particles in
resonance with a wave having the given wave vector k. The direction of the z-
axis is so chosen that the magnetic field increases as z + «, Expression (63)
indicates that the rising wave penetrates from the mirror into the interior of
the trap.
As a result of wave buildup, the coefficient of diffusion Dy likewise in-

creases with distance from the mirror:

< x .
' ~ ¥ (2) ds - 6

In (Du/Dr) = 2L ds = [ras2. (64)

0 ° .
Z
The quantity ¢ = .gly(z)/v"]dz is maximum for waves for which
’
vy~ /}Z;C' m(lsi e with z = 2BL

The coefficient of diffusion thus turns out to be equal to
In (DstfDy) ~ = s
i (DnfDn,) ~ )

in order of magnitude. rj; in the latter expression is the radius of Larmor
rotation of the ion. Since the diffusion associated with thermal oscillatiomns

is close to the diffusion due to pair collisions, the quantity L/rAiB4/3

serves
as a rough approximation of the reduction of particle lifetimes in the trap.

In existing traps this quantity is very small, since their B ~ 1074 - 10'5,
and zp; ~ 1 - 0.1L.

The quantity Bcn(rAi/L)B/4 gives the critical value of B above which ano-

malous escape occurs even in mirror-equipped traps stabilized against magneto-

hydrodynamic instability.
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We note that any increase in the degree of anisotropy of the distribution
function resulting from injection or magnetic compression increases the diffu-

sion we have been describing.

7. Conclusion

The quasilinear approximation is a useful method of describing weakly non-
linear processes in plasmas. Full description of the steady-state of a plasma
situated in external fields or of the relaxation process in an unstable plasma,
in addition to consideration of the reaction effect of oscillations on the par-
ticle distribution, also requires knowledge of the specific dissipation pro-
cesses (e.g., of the "trajectory intersection" type), as well as the laws of
disintegration of the spectrum of plasma oscillations. At the present time
these processes have been studied only for certain special and simple models of
the one-dimensional Langmuir electron oscillation type. Substantial progress

1"

in this field is apparently attainable by way of "computer experiments'.
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